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SUMMARY
Language models have recently emerged as a powerful machine-learning approach for distilling information
from massive protein sequence databases. From readily available sequence data alone, these models
discover evolutionary, structural, and functional organization across protein space. Using language models,
we can encode amino-acid sequences into distributed vector representations that capture their structural
and functional properties, as well as evaluate the evolutionary fitness of sequence variants. We discuss
recent advances in protein languagemodeling and their applications to downstreamprotein property predic-
tion problems. We then consider how these models can be enriched with prior biological knowledge and
introduce an approach for encoding protein structural knowledge into the learned representations. The
knowledge distilled by these models allows us to improve downstream function prediction through transfer
learning. Deep protein language models are revolutionizing protein biology. They suggest new ways to
approach protein and therapeutic design. However, further developments are needed to encode strong bio-
logical priors into protein language models and to increase their accessibility to the broader community.
INTRODUCTION

Proteins aremolecular machines that carry out themajority of the

molecular function of cells. They are composed of linear se-

quences of amino acids which fold into complex ensembles of

3-dimensional structures, which can range from ordered to

disordered and undergo conformational changes; biochemical

and cellular functions emerge from protein sequence and

structure. Understanding the sequence-structure-function rela-

tionship is the central problem of protein biology and is pivotal

for understanding disease mechanisms and designing proteins

and drugs for therapeutic and bioengineering applications.

The complexity of the sequence-structure-function relation-

ship continues to challenge our computational modeling ability,

in part because existing tools do not fully realize the potential

of the increasing quantity of sequence, structure, and functional

information stored in large databases. Until recently, computa-

tional methods for analyzing proteins have used either first prin-

ciples-based structural simulations or statistical sequence

modeling approaches that seek to identify sequence patterns

that reflect evolutionary, and therefore functional, pressures

(Marks, Hopf and Sander, 2012; Ekeberg et al., 2013; Wang

et al., 2017; Liu et al., 2018; Yang et al., 2020) (Figure 1). Within

these methods, structural analysis has been largely first princi-

ples drivenwhile sequence analysismethods are primarily based

on statistical sequencemodels, whichmake strong assumptions
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about evolutionary processes, but have become increasingly

data driven with the growing amount of available natural

sequence information.

Physics-based approaches use all atom energy functions (Hor-

nak et al., 2006; Hess et al., 2008; Alford et al., 2017) or heuristics

designed for proteins (Rohl et al., 2004) to estimate the energy of a

given conformation and simulate natural motions. Thesemethods

are appealing, because they draw on our fundamental under-

standing of the physics of these systems and generate interpret-

able hypotheses. The Rosetta tool, which stitches together folded

fragments associatedwith small constant-size contiguous subse-

quences, has been remarkably successful in its use of free energy

estimation for protein folding and design (Leaver-Fay et al., 2011),

and molecular dynamics software such as GROMACS are widely

used formodeling dynamics and fine-grained structure prediction

(Hess et al., 2008). Statistical sampling approaches have also

been developed that seek to sample from accessible conforma-

tions based on coarse grained energy functions (Godzik, Kolinski

and Skolnick, 1993; Srinivasan and Rose, 1995; Choi and Pappu,

2019). Rosetta has been especially successful for solving the

design problemby using amix of structural templates and free en-

ergyminimization to find sequences thatmatch a target structure.

However, despite Rosetta’s successes, it and similar approaches

assume simplified energy models, are extremely computationally

expensive, require expert knowledge to set up correctly, and have

limited accuracy.
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Two-dimensional schematic of some recent and classical

methods in protein sequence and structure analysis, characterized

by the extent to which the approach is motivated by first principles

(strong biological priors) versus driven by big data

We color methods by types of input-output pairs. Green: sequence-sequence,

purple: sequence-structure, blue: structure-sequence, orange: structure-

structure. Classical methods tend to be more strongly first principles driven

while newermethods are increasingly data driven. Existingmethods tend to be

either data driven or first principles-based with few methods existing in be-

tween. Note that, at this time, details of AlphaFold2 have not been made

public, so placement in Figure 1 is a rough estimate. Somemethods, especially

Rosetta, can perform multiple functions.
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At the other end of the spectrum, statistical sequence models

have proven extremely useful for modeling the amino acid se-

quences of related sets of proteins. These methods allow us to

discover constraints on amino acids imposed by evolutionary

pressures and are widely used for homology search (Altschul

and Koonin, 1998; Bateman et al., 2004; Rohl et al., 2004; Finn,

Clements and Eddy, 2011; Remmert et al., 2011a) and for predict-

ing residue-residue contacts in the 3D protein structure using

covariation between amino acids at pairs of positions in the

sequence (coevolution) (Göbel et al., 1994; Berger, 1995; Berger

et al., 1995; Wolf, Kim and Berger, 1997; McDonnell et al., 2006;

Trigg et al., 2011; Marks, Hopf and Sander, 2012; de Juan, Pazos

and Valencia, 2013; Ekeberg et al., 2013). Advances in protein

structure prediction have been driven by building increasingly

large deep learning systems to predict residue-residue distances

from sequence families (Liu et al., 2018; Xu and Wang, 2019) and

fold proteins based on the predicted distance constraints which

culminated recently in the success of AlphaFold2 at the Critical

Assessment of protein Structure Prediction (CASP) 14 competi-

tion (Jumper et al., 2020). These methods rely on large datasets

of protein sequences that are similar enough to be aligned with

high confidence but contain enough divergence to confidently

infer statistical couplings between positions. Accordingly, they

are unable to learn patterns across large-scale databases of

possibly unrelated proteins and have limited ability to draw on

the increasing structure and function information available.
Language models have recently emerged as a powerful para-

digm for generative modeling of sequences and as a means to

learn ‘‘content-aware’’ data representations from large-scale

sequence datasets. Statistical language models are probability

distributions over sequences of tokens (e.g., words or characters

in natural language processing, amino acids for proteins). Given

a sequence of tokens, a language model assigns a probability to

the whole sequence. In natural language processing (NLP), lan-

guagemodels are widely used for machine translation, question-

answering, and information retrieval among other applications.

In biology, profile HiddenMarkovModels (HMMs) are simple lan-

guage models that are already widely used for homology

modeling and search. Language models are able to capture

complex dependencies between amino acids and can be trained

on all protein sequences rather than being focused on individual

families; in doing so, they have the potential to push the limits of

statistical sequence modeling. In bringing these models to

biology, we now not only have the ability to learn from naturally

observed sequences, including across all of known sequence

space (Alley et al., 2019; Bepler and Berger, 2019), but are also

able to incorporate existing structural and functional knowledge

through multi-task learning. (Box 1 provides a glossary of terms

that might be less familiar.) Language models learn the probabil-

ity of a sequence occurring and this can be directly applied to

predict the fitness of sequence mutations (Riesselman, Ingra-

ham and Marks, 2018; Hie et al., 2020a, 2021). They also learn

summary representations, powerful features that can be used

to better capture sequence relationships and link sequence to

function via transfer learning (Alley et al., 2019; Bepler and

Berger, 2019; Rao et al., 2019; Rives et al., 2019; Hie et al.,

2020b; Luo et al., 2020). Finally, language models also offer

the potential for controlled sequence generation by conditioning

the language model on structural (Ingraham et al., 2019a) or

functional (Madani et al., 2020) specifications.

Deep languagemodels are an exciting breakthrough in protein

sequence modeling, allowing us to discover aspects of structure

and function from only the evolutionary relationships present in a

corpus of sequences. However, the full potential of thesemodels

has not been realized as they continue to benefit from more pa-

rameters, more compute power, and more data. At the same

time, these models can be enriched with strong biological priors

through multi-task learning.

Here, we propose that methods incorporating both large data-

sets and strong domain knowledge will be key to unlocking the

full potential of protein sequencemodeling. Specifically, physical

structure-based priors can be learned through structure supervi-

sion while also learning evolutionary relationships from hundreds

of millions of natural protein sequences. Furthermore, the evolu-

tionary and structural relationships encoded allow us to learn

functional properties of proteins through transfer learning. In

this synergy, we will discuss these developments and present

new results toward enriching large-scale language models with

structure-based priors through multi-task learning. First, we

will discuss new developments in deep learning and language

modeling and their application to protein sequence modeling

with large datasets. Second, we will discuss how we can enrich

these models with structure supervision. Third, we will discuss

transfer learning and demonstrate that the evolutionary and

structural information encoded in our deep language models
Cell Systems 12, 654–669, June 16, 2021 655



Box 1. Glossary

1-hot [embedding]. Vector representation of a discrete variable commonly used for discrete values that have no meaningful

ordering. Each token is transformed into a V-dimensional zero vector, where V is the size of the vocabulary (the number of unique

tokens, e.g., 20, 21, or 26 for amino acids depending on inclusion of missing and non-canonical amino acid tokens), except for the

index representing the token, which is set to one.

autoregressive [language model]. Language models that factorize the probability of a sequence into a product of conditional

probabilities in which the probability of each token is conditioned on the preceding tokens, pðx1::: xLÞ =
QL

i =1 pðxijx1:::xi�1Þ. Ex-
amples of autoregressive language models include k-mer (AKA n-gram) models, Hidden Markov Models, and typical autoregres-

sive recurrent neural network or generative transformer language models. These models are called autoregressive because they

model the probability of one token after another in order.

Bayesian methods. A statistical inference approach that uses Bayes rule to infer a posterior distribution over model parameters

given by the observed data. Because thesemethods describe distributions over parameters or functions, they are especially useful

in small data regimes or other settings when prediction uncertainties are desirable.

cloze task. A task in natural language processing, also known as the cloze test. The task is to fill in missing words given the

context. For example, ‘‘The quick brown ____ jumps over the lazy dog.’’

conditional random field.Models the probability of a set (sequence in this case, i.e. linear chain CRF) of labels given a set of input

variables by factorizing it into locally conditioned potentials conditioned on the input variables, pðy1::: yL j x1::: xLÞ =

pðy1j x1::: xLÞ
QL

i = 2 pðyi j yi�1 ; x1::: xLÞ. This is often simplified such that each conditional only depends on the local input variable,

i.e., pðy1::: yL j x1::: xLÞ = pðy1j x1Þ
QL

i =2 pðyi j yi�1 ; xiÞ. Linear chain CRFs can be seen as the discriminative version of HiddenMar-

kov Models.

contextual vector embedding. Vector embeddings that include information about the sequence context in which a token occurs.

Encoding context into vector embeddings is important in NLP, because words can have different meanings in different contexts

(i.e. many homonyms exist). For example, in the sentences, ‘‘she tied the ribbon into a bow’’ and ‘‘she drew back the string on her

bow,’’ the word bow refers to two different objects that can only be inferred from context. In the case of proteins, this problem is

even worse, because there are only 20 (canonical) amino acids and so their ‘‘meaning’’ is highly context dependent. This is in

contrast to typical vector embedding methods that learn a single vector embedding per token regardless of context.

distributional hypothesis. The observation that words that occur in similar contexts tend to have similar meanings. Applies also to

proteins due to evolutionary pressure (Harris, 1954).

Gaussian process. A class of models that describes distributions over functions conditioned on observations from those func-

tions. Gaussian processesmodel outputs as being jointly normally distributed where the covariance between the outputs is a func-

tion of the input features. See Rasmussen and Williams for a comprehensive overview (Rasmussen and Williams, 2005)

generative model. A model of the data distribution, pðXÞ, joint data distribution, pðX;YÞ, or conditional data distribution, pðXjY =

yÞ. Usually framed in contrast to discriminative models that model the probability of the target given an observation, pðY jX = xÞ.
Here, Xis observable, for example the protein sequence, and Y is a target that is not observed, for example the protein structure or

function. Conditional generative and discriminative models are related by Bayes’ theorem. Language models are generative

models.

hidden layer. Intermediate vector representations in a deep neural network. Deep neural networks are structured as layered data

transformations before outputting a final prediction. The intermediate layers are referred to as ‘‘hidden’’ layers.

inductive bias. Describes the assumptions that a model uses to make predictions for data points it has not seen (Mitchell, 1980).

That is, the inductive bias of a model is how that model generalizes to new data. Every machine learning model has inductive

biases, implicitly or explicitly. For example, protein phenotype prediction based on homology assumes that phenotypes covary

over evolutionary relatedness. In other words, it formally models the idea that proteins that are more evolutionarily related are likely

to share the same function. In thinking about deep neural networks applied to proteins, it is important to understand the inductive

biases thesemodels assume, because it naturally relates to the true properties of the function we are trying tomodel. However, this

is challenging, because we can only roughly describe the inductive biases of these models (Battaglia, Hamrick and Bapst, 2018).

languagemodel. Probabilistic model of whole sequences. In the case of natural language, languagemodels typically describe the

probability of sentences or documents. In the case of proteins, they model the probability of amino acid sequences. Being simply

probabilistic models, language models can take on many specific incarnations from column frequencies in multiple sequence

alignments to Hidden Markov Models to Potts models (direct coupling analysis) to deep neural networks.

manifold embedding. A distance preserving, low dimensional embedding of the data. The goal of manifold embedding is to find

points low dimensional vectors, z1::: zn, such that the distances, dðzi ; zjÞ , are as close as possible to the distances in the original

data space, dðxi ; xjÞ, given n high dimensional data vectors, x1::: xn. t-SNE is a commonly usedmanifold embedding approach for

visualization of high dimensional data.

masked language model. The training task used by BERT and other recent bidirectional language models. Instead of modeling

the probability of a sequence autoregressively, masked language models seek to model the probability of each token given all

other tokens. For computational convenience, this is achieved by randomly masking some percentage of the tokens in each

(Continued on next page)
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Box 1. Continued

minibatch and training the model to recover those tokens. An auxiliary token is added to the vocabulary to indicate that this token

has been masked.

multi-task learning. A machine learning paradigm in which multiple tasks are learned simultaneously. The idea is that similarities

between tasks can lead to each task being learned better in combination rather than learning each individually. In the case of rep-

resentation learning, multi-task learning can also be useful for learning representations that encode information relevant for all

tasks. Multi-task learning allows us to use the signals encoded in other training signals as an inductive bias when learning the

goal task.

representation learning. The problem of learning features, or intermediate data representations, better suited for solving a pre-

diction problem on raw data. Deep learning systems are described as representation learning systems, because they learn a series

of data transformations that make the goal task progressively easier to solve before outputting a prediction.

residue-residue contact prediction. The task of learning which amino acid residues are in contact in folded protein structures,

where contact is assumed to be within a small number of angstroms, often with the goal of constraining the search space for pro-

tein structure prediction.

self-supervised learning. A relatively new term for methods for learning from data without labels. Generally used to describe

methods that ‘‘automatically’’ create labels through data augmentation or generative modeling. Can be viewed as a subset of un-

supervised learning focused on learning representations useful for transfer learning.

semantic priors. Prior semantic understanding of a word or token, e.g., protein structure or function.

semantics. The meaning of a word or token. In reference to proteins, we use semantics to mean the ‘‘functional’’ purpose of a

residue, or combinations of residues.

structural classification of proteins (SCOP). A mostly manual curation of structural domains based on similarities of their se-

quences and structure. Similar databases include CATH (Sillitoe et al., 2021).

structural similarity prediction.Given two protein sequences, predict how similar their respective structures would be according

to some similarity measure.

supervised learning. A problem in machine learning. How we can learn a function to predict a target variable, usually denoted y,

given an observed one, usually denoted x, from a set of known x, y pairs.

transfer learning. A problem inmachine learning. Howwe can take knowledge learned from one task and apply it to solve another

related task.When the tasks are different but related, representations learned on one task can be applied to the other. For example,

representations learned from recognizing dogs could be transferred to recognizing cats. In the case of proteins and language

models, we are interested in applying knowledge gained from learning to generate sequences to predicting function. Transfer

learning could also be applied to applying representations learned from predicting structure to function or from predicting one

function to another function among other applications.

unsupervised learning. A problem in machine learning that asks how we can learn patterns from unlabeled data. Clustering is a

classic unsupervised learning problem. Unsupervised learning is often formulated as a generative modeling problem, where we

view the data as being generated from some unobserved latent variable(s) that we infer jointly with the parameters of the model.

vector embedding. A term used to describe multidimensional real numbered representations of data that is usually discrete or

high dimensional, word embeddings being a classic example. Sometimes referred to as ‘‘distributed vector embeddings’’ or

‘‘manifold embeddings’’ or simply just ‘‘embeddings.’’ Low-dimensional vector representations of high dimensional data such

as images or gene expression vectors as found by methods such as t-SNE are also vector embeddings. Usually, the goal in

learning vector embeddings is to capture some semantic similarity between data as a function of similarity or distance in the vector

embedding space.
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can be used to improve protein function prediction. Finally, we

will discuss future directions in protein machine learning and

large-scale language modeling.

Protein language models distill information from
massive protein sequence databases
Language models for protein sequence representation learning

(Figure 2) have seen a surge of interest following the success of

large-scale models in the field of natural language processing

(NLP). Thesemodels draw on the idea that distributed vector rep-

resentations of proteins can be extracted from generativemodels

of protein sequences, learned from a large and diverse database

of sequences across natural protein space, and thus can capture

the semantics, or function, of a given sequence. Here, function re-

fers to any and all properties related towhat a protein does. These
properties are often subject to evolutionary pressures because

these functions must be maintained or enhanced in order for an

organism to survive and reproduce. These pressures manifest

in the distribution over amino acids present in natural protein se-

quences and, hence, are discoverable from large and diverse

enough sets of naturally occurring sequences.

The ability to learn semantics emerges from the distributional

hypothesis: tokens (e.g., words, amino acids) that occur in

similar contexts tend to carry similar meanings. Language

models only require sequences to be observed and are trained

to model the probability distribution over amino acids using an

autoregressive formulation (Figures 2A and 2B) or masked posi-

tion prediction formulation (also called a cloze task in NLP, Fig-

ure 2C). In autoregressive language models, the probability of

a sequence is factorized such that the probability of each token
Cell Systems 12, 654–669, June 16, 2021 657



Figure 2. Diagram of model architectures and language modeling approaches

(A) Language models model the probability of sequences. Typically, this distribution is factorized over the sequence such that the probability of a token (e.g.,

amino acid) at position i (xi) is conditioned on the previous tokens. In neural language models, this is achieved by first computing a hidden layer (hi) given by the

sequence up to position i-1 and then calculating the probability distribution over token xi given hi. In this example sequence, ‘‘^’’ and ‘‘$’’ represent start and stop

tokens respectively and the sequence has length L.

(B) Bidirectional languagemodels instead model the probability of a token conditioned on the previous and following tokens independently. For each token xi, we

compute a hidden layer using separate forward and reverse direction models. These hidden layers are then used to calculate the probability distribution over

tokens at position i conditioned on all other tokens in the sequence. This allows us to extract representations that capture complete sequence context.

(C) Masked language models model the probability of tokens at each position conditioned on all other tokens in the sequence by replacing the token at each

position with an extra ‘‘mask’’ token (‘‘X’’). In these models, the hidden layer at each position is calculated from all tokens in the sequence which allows the model

to capture conditional non-independence between tokens on either side of the masked token. This formulation lends itself well to transfer learning, because the

representations can depend on the full context of each token.
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is conditioned only on the preceding tokens. This factorization is

exact and is useful when sampling from the distribution or

evaluating the probabilities themselves is of primary interest.

The drawback to this formulation is that the representations

learned for each position depend only on preceding positions,

potentially making them less useful as contextual representa-

tions. The masked position prediction formulation (also known

as masked language modeling) addresses this problem by

considering the probability distribution over each token at each

position conditioned on all other tokens in the sequence. The

masked languagemodeling approach does not allow calculating

correctly normalized probabilities of whole sequences but is

more appropriate when the learned representations are the out-

comes of primary interest. The unprecedented recent success of

language models in natural language processing, e.g.Google’s

BERT and OpenAI’s GTP-3, is largely driven by their ability to

learn from billions of text entries in enormous online corpora.

Analogously, we have natural protein sequence databases with

100 s of millions of unique sequences that continue to grow

rapidly.
658 Cell Systems 12, 654–669, June 16, 2021
Recent advances in NLP have been driven by innovations in

neural network architectures, new training approaches,

increasing compute power, and increasing accessibility of

huge text corpuses. Several NLP methods have been proposed

that draw on unsupervised, now often called self-supervised,

learning (Devlin et al., 2018; Peters et al., 2018) to fit large-scale

bidirectional long-short term recurrent neural networks (bidirec-

tional LSTMs or biLSTMs) (Hochreiter and Schmidhuber, 1997;

Graves, Fernández and Schmidhuber, 2005) or Transformers

(Vaswani et al., 2017) and its recent variants. LSTMs are recur-

rent neural networks. These models process sequences one to-

ken at a time in order and therefore learn representations that

capture information from a position and all previous positions.

In order to include information from tokens before and after

any given position, bidirectional LSTMs combine two separate

LSTMs operating in the forward and backward directions in

each layer (e.g., as in Figure 2B). Although these models can

learn representations including whole sequence context, their

ability to learn distant dependencies is limited in practice. To

address this limitation, transformers learn representations by
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explicitly calculating an attention vector over each position in the

sequence. In the self-attention mechanism, the representation

for each position is learned by ‘‘attending to’’ each position of

the same sequence, well suited for masked language modeling

(Figure 2C). In a self-attention module, the output representation

of each element of a sequence is calculated as a weighted sum

over transformations of the input representations at each posi-

tion where the weighting itself is based on a learned transforma-

tion of the inputs. The attention mechanism is typically believed

to allow transformers to learn dependencies between positions

distant in the linear sequence more easily. Transformers are

also useful as autoregressive language models.

In natural language processing, Peters et al. recognized that

the hidden layers (intermediate representations of stack neural

networks) of biLSTMs encoded semantic meaning of words in

context. This observation has been newly leveraged for biolog-

ical sequence analysis (Alley et al., 2019; Bepler and Berger,

2019) to learnmore semantically meaningful sequence represen-

tations. The success of deep transformers for machine transla-

tion inspired their application to contextual text embedding,

that is learning contextual vector embeddings of words and sen-

tences, giving rise to the now widely used Bidirectional Encoder

Representations from Transformers (BERT) model in NLP (Devlin

et al., 2018). BERT is a deep transformer trained as a masked

language model on a large text corpus. As a result, it learns

contextual representations of text that capture contextual mean-

ing and improve the accuracy of downstream NLP systems.

Transformers have also demonstrated impressive performance

as autoregressive languagemodels, for example with the Gener-

ative Pre-trained Transformer (GPT) family of models (Radford

et al., 2018, 2019; Brown et al., 2020), which have made impres-

sive strides in natural language generation. These works have

inspired subsequent applications to protein sequences (Rao

et al., 2019; Rives et al., 2019; Elnaggar et al., 2020; Vig

et al., 2020).

Although transformers are powerful models, they require enor-

mous numbers of parameters and train more slowly than typical

recurrent neural networks. With massive scale datasets and

compute and time budgets, transformers can achieve impres-

sive results, but, generally, recurrent neural networks (e.g.,

biLSTMs) need less training data and less compute, so might

be more suitable for problems where fewer sequences are avail-

able, such as training on individual protein families, or compute

budgets are tight. Constructing language models that achieve

high accuracy with better compute efficiency is an algorithmic

challenge for the field. An advantage of general purpose pre-

trained protein models is that we only need to do the expensive

training step once; the models can then be used to make predic-

tions or can be applied to new problems via transfer learning

(Bengio, 2012), as discussed below.

Using these and other tools, protein language models are able

to synthesize the enormous quantity of known protein se-

quences by training on 100 s of millions of sequences stored in

protein databases (e.g., UniProt, Pfam, NCBI (Bateman et al.,

2004; Pruitt, Tatusova and Maglott, 2007; UniProt Consortium,

2019)). The distribution over sequences learned by language

models captures the evolutionary fitness landscape of known

proteins. When trained on tens of thousands of evolutionarily

related proteins, the learned probability mass function
describing the empirical distribution over naturally occurring se-

quences has shown promise for predicting the fitness of

sequence variants (Riesselman, Ingraham and Marks, 2018;

Hie et al., 2020a, 2021). Because these models learn from evolu-

tionary data directly, they can make accurate predictions about

protein function when function is reflected in the fitness of natural

sequences. Riesselman et al. first demonstrated that language

models fit on individual protein families are surprisingly accurate

predictors of variant fitness measured in deep mutational scan-

ning datasets (Riesselman, Ingraham and Marks, 2018). New

work has since shown that the representations learned by lan-

guage models are also powerful features for learning of variant

fitness as a subsequent supervised learning task (Rives et al.,

2019; Luo et al., 2020), building on earlier observations that lan-

guage models can improve protein property prediction through

transfer learning (Bepler and Berger, 2019). Recently, Hie et al.

used language models to learn evolutionary fitness of viral enve-

lope proteins and were able to predict mutations that could allow

the SARS-CoV-2 spike protein to escape neutralizing antibodies

(Hie et al., 2020a, 2021). As of publication, several variants pre-

dicted to have high escape potential have appeared in SARS-

CoV-2 sequencing efforts around the world, but viral escape

has not yet been experimentally verified (Walensky et al., 2021).

A few recent works have focused on increasing the scale of

these models by adding more parameters and more learnable

layers to improve sequence modeling. Interestingly, because

so many sequences are available, these models continue to

benefit from increased size (Rives et al., 2019). This parallels

the general trend in natural language processing, where the

number of parameters, rather than specific architectural

choices, is the best indicator of model performance (Kaplan

et al., 2020). However, ultimately, model size is limited by the

computational resources available to train and apply these

models. In NLP, models such as BERT and GPT-3 have become

so large that only the best funded organizations with massive

Graphics Processing Unit (GPU) compute clusters are realisti-

cally able to train and deploy them. This is demonstrated in

some recent work on protein models where single transformer-

based models were trained for days to weeks on hundreds of

GPUs (Rives et al., 2019; Elnaggar et al., 2020; Vig et al.,

2020), costing potentially 100 s of thousands of dollars for

training. Increasing the scale of these models promises to

continue to improve our ability to model proteins, but more

resource efficient algorithms are needed to make these models

more accessible to the broader scientific community.

So far, the language models we have discussed use natural

protein sequence information. However, they do not learn from

the protein structure and function knowledge that has been

accumulated over the past decades of protein research. Incor-

porating such knowledge requires supervised approaches.

Supervision encodes biological meaning
Proteins are more than sequences of characters: they are phys-

ical chains of amino acids that fold into three-dimensional struc-

tures and carry out functions based on those structures. The

sequence-structure-function relationship is the central pillar of

protein biology and significant time and effort has been spent

to elucidate this relationship for select proteins of interest. In

particular, the increasing throughput and ease-of-use of protein
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structure determination methods, (e.g., X-ray crystallography

and cryo-EM (Cheng et al., 2015; Callaway, 2020)), has driven

a rapid increase in the number of known protein structures avail-

able in databases such as the Protein Data Bank (PDB) (Berman

et al., 2000). There are nearly 175,000 entries in PDB as of

publication and this number is growing rapidly. 14,000 new

structures were deposited in 2020 and the rate of new structure

deposition is increasing. We pursue the intuition that incorpo-

rating such knowledge into our models via supervised learning

can aid in predicting function from sequence, bypassing the

need for solved structures.

Supervised learning is the problem of finding a mathematical

function to predict a target variable given some observed vari-

ables. In the case of proteins, supervised learning is commonly

used to predict protein structure from sequence, protein function

from sequence, or for other sequence annotation problems (e.g.,

signal peptide or transmembrane region annotation). Beyond

making predictions, supervised learning can be used to encode

specific semantics into learned representations. This is common

in computer visionwhere, for example, pre-training image recog-

nition models on the large ImageNet dataset is used to prime the

model with information from natural image categories (Russa-

kovsky et al., 2015).

When we use supervised approaches, we encode semantic

priors into our models. These priors are important for learning re-

lationships that are not obvious from the raw data. For example,

unrelated protein sequences can form the same structural fold

and, therefore, are semantically similar. However, we cannot

deduce this relationship from sequences alone. Supervision is

required to learn that these sequences belong to the same se-

mantic category. Although structure is more informative of func-

tion than sequence (Zhang and Kim, 2003; Shin et al., 2007) and

structure is encoded by sequence, predicting structure remains

hard, particularly due to the relative paucity of structural relative

to sequence data. Significant strides have been made recently

with massive computing resources (Jumper et al., 2020); yet

there is still a long way to go before a complete sequence to

structure mapping is possible. The degree to which such a

map could or should be possible, even in principle, is unclear.

Evolutionary relationships between sequences are informative

of structural and functional relationships, but only when the de-

gree of sequence homology is sufficiently high. Above 30%

sequence identity, structure and function are usually conserved

between natural proteins (Rost, 1999). Often called the ‘‘twilight

zone’’ of protein sequence homology, proteins with similar struc-

tures and functions still exist below this level, but they can no

longer be detected from sequence similarity alone and it is un-

clear whether their functions are conserved. Although it is gener-

ally believed that proteins with similar sequences form similar

structures, there are also interesting examples of highly similar

protein sequences having radically different structures and func-

tions (Kosloff and Kolodny, 2008; Wei et al., 2020) and of se-

quences that can form multiple folds (James and Tawfik,

2003). Evolutionary innovation requires that protein function

can change with only a few mutations. Furthemore, it is impor-

tant to note that although structure and function are related,

they should not be directly conflated.

These phenomena suggest that there are aspects of protein

biology that may not be discoverable by statistical sequence
660 Cell Systems 12, 654–669, June 16, 2021
models alone. Supervision that represents known protein struc-

ture, function, and other prior knowledge may be necessary to

encode distant sequence relationships into learned embed-

dings. By analogy, cars and boats are both means of transporta-

tion, but we would not expect a generative image model to infer

this relationship from still images alone. However, we can teach

these relationships through supervision.

On this premise, we hypothesize that incorporating structural

supervision when training protein language models will improve

the ability to predict function in downstream tasks through trans-

fer learning. Eventually, such language models may become

powerful enough that we can predict function directly without

the need for solved structures. In the remainder of this Synthesis,

we will explore this idea.

Multi-task language models capture the semantic
organization of proteins
Here, we will demonstrate that training protein language models

with self-supervision on a large amount of natural sequence data

and with structure supervision on a smaller set of sequence,

structure pairs enriches the learned representations and trans-

lates into improvements in downstream prediction problems

(Figure 3). First, we generate a dataset that contains 76 million

protein sequences from Uniref (Suzek et al., 2007) and an addi-

tional 28,000 protein sequences with structures from the Struc-

tural Classification of Proteins (SCOP) database, which classifies

protein sequences into a hierarchy of structural motifs based on

their sequence and structural similarities (e.g., family, super-

family, class) (Fox, Brenner and Chandonia, 2014; Chandonia,

Fox and Brenner, 2017). Next, we train a bidirectional LSTM

with three learning tasks simultaneously: 1) the masked lan-

guage modeling task (Figures 2C and 3A), 2) residue-residue

contact prediction (Figure 3B), and 3) structural similarity predic-

tion (Figure 3C).

The fundamental idea behind this novel training scheme is to

combine self-supervised and supervised learning approaches

to overcome the shortcomings of each. Specifically, the masked

language modeling objective (self-supervision) allows us to learn

frommillions of natural protein sequences from the Uniprot data-

base. However, this does not include any prior semantic knowl-

edge from protein structure and, therefore, has difficulty learning

semantic similarity between divergent sequences. To address

this, we consider two structural supervision tasks, residue-resi-

due contact prediction and structural similarity prediction,

trained with tens of thousands of protein structures classified

by SCOP. In the residue-residue contact prediction task, we

use the hidden layers of the language model to predict contacts

between residues within the 3D structure using a learned bilinear

projection layer (Figure 3B). In the structural similarity prediction

task, we use the hidden layers of the language model to predict

the number of shared structural levels in the SCOP hierarchy by

aligning the proteins in vector embedding space and using this

alignment score to predict structural similarity from the

sequence embeddings. This task is critical for encoding struc-

tural relationships between unrelated sequences into the model.

The parameters of the language model are shared across the

self-supervised and two supervised tasks and the entire model

is trained end-to-end. The set of proteins with known structure

is much smaller than the full set of known proteins in Uniprot



Figure 3. Our multi-task contextual embed-

ding model learning framework

We train a neural network (NN) sequence encoder to

solve three tasks simultaneously. The first task is

masked language modeling on millions of natural

protein sequences. We include two sources of

structural supervision in a multi-task framework

(MT-LSTM for Multi-Task LSTM) in order to encode

structural semantics directly into the representa-

tions learned by our language model. We combine

this with the masked language model objective to

benefit from evolutionary and less available struc-

ture information (only 10 s of thousands of proteins).

(A) The masked language model objective allows us

to learn contextual embeddings from hundreds of

millions of sequences. Our training framework is

agnostic to the NN architecture, but we specifically

use a three layer bidirectional LSTM with skip con-

nections (inset box) in this work in order to capture

long range dependencies but train quickly. We can

train language models using only this objective

(DLM-LSTM), but can also enrich the model with

structural supervision.

(B) The first structure task is predicting contacts

between residues in protein structures using a

bilinear projection of the learned embeddings. In this

task, The hidden layer representations of the lan-

guage model are then used to predict residue-res-

idue contacts using a bilinear projection. That is, we

model the log likelihood ratio of a contact between

the i-th and j-th residues in the protein sequence, by

ziWzj + bwhere matrix W and scalar b are learned

parameters.

(C) The second source of structural supervision is

structural similarity, defined by the Structural Classification of Proteins (SCOP) hierarchy (Hubbard et al., 1997). We predict the ordinal levels of similarity between

pairs of proteins by aligning the sequences in embedding space. Here, we embed the query and target sequences using the language model (Z1 and Z2) and then

predict the structural homology by calculating the pairwise distances between the query and target embeddings (di,j) and aligning the sequences based on these

distances.
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and, therefore, by combining these tasks in a multi-task learning

approach we can learn language models and sequence repre-

sentations that are enriched with strong biological priors from

known protein structures. We refer to this model as the multi-

task (MT)-LSTM.

Next, we demonstrate how the trained language model can be

used for protein sequence analysis and compare this with con-

ventional approaches. Given the trained MT-LSTM, we apply it

to new protein sequences to embed them into the learned se-

mantic representation space (Figure 4A). Sequences are fed

through the model and the hidden layer vectors are combined

to form vector embeddings of each position of the sequences.

Given a sequence of length L, this yields L D-dimensional vec-

tors, where D is the dimension of the vector embeddings. This al-

lows us to map the semantic space of each residue within a

sequence, but we can also map the semantic space of whole se-

quences by summarizing them into fixed size vector embed-

dings via a reduction operation. Practically, this is useful for

coarse sequence comparisons including clustering andmanifold

embedding for visualization of large protein datasets, revealing

evolutionary, structural, and functional relationships between se-

quences in the dataset (Figure 4B). In this figure, we visualize

proteins in the SCOP dataset, colored by structural class, after

embedding with our MT-LSTM. For comparison, we also show

results of embedding using a bidirectional LSTM trained only
with the masked language modeling objective (DLM-LSTM),

which is not enriched with the structure-based priors. We

observe that even though the DLM-LSTMmodel was trained us-

ing only sequence information, protein sequences still organize

roughly by structure in embedding space. However, this organi-

zation is improved when we include structure supervision in the

language model training (Figure 4B).

The semantic organization of our learned embedding space

enables a direct application: we can search protein sequence

databases for semantically related proteins by comparing pro-

teins based on their vector embeddings (Bepler and Berger,

2019). Because we embed sequences into a semantic represen-

tation space, we can find structurally related proteins even

though their sequences are not closely related (Figure 4C, Table

S1). To demonstrate this, we take pairs of proteins in the SCOP

database, not seen by our multi-task model during training, and

calculate the similarity between these pairs of sequences using

direct sequence homology-based methods (Needleman-

Wunsch alignment, HMM-sequence alignment, and HMM-

HMM alignment (Needleman and Wunsch, 1970; Eddy, 2011;

Remmert et al., 2011b)), a popular structure-based method

(TMalign (Zhang and Skolnick, 2005)), and an alignment between

the sequences in our learned embedding space. We then eval-

uate these methods based on their ability to correctly find pairs

of proteins that are similar at the class, fold, superfamily, and
Cell Systems 12, 654–669, June 16, 2021 661



Figure 4. Language models capture the semantic organization of proteins

(A) Given a trained language model, we embed sequences by processing them with the neural network and taking the hidden layer representations for each

position of the sequence. This gives an LxDmatrix containing aD-dimensional vector embedding for each position of a length L sequence.We can reduce this to a

D-dimensional vector ‘‘summarizing’’ the entire sequence by a pooling operation. Specifically, we use averaging here. These representations allow us to directly

visualize large protein datasets with manifold embedding techniques.

(B) Manifold embedding of SCOP protein sequences reveals that our language models learn protein sequence representations that capture structural semantics

of proteins. We embed thousands of protein sequences from the SCOP database and show t-SNE plots of the embedded proteins colored by SCOP structural

class. The masked language (unsupervised) model (DLM-LSTM) learns embeddings that separate protein sequences by structural class, whereas the multi-task

languagemodel (MT-LSTM) with structural supervision learns an even better organized embedding space. In contrast, manifold embedding of sequences directly

(edit distance) produces an unintelligible mash and does not resolve structural groupings of proteins.

(C) In order to quantitatively evaluate the quality of the learned semantic embeddings, we calculate the correspondence between semantic similarity predicted by

our language model representations and ground truth structural similarities between proteins in the SCOP database. Given two proteins, we calculate the se-

mantic similarity between themby embedding these proteins using ourMT-LSTM, align the proteins using the embeddings, and calculate an alignment score.We

compute the average-precision score for retrieving pairs of proteins similar at different structural levels in the SCOP hierarchy based on this predicted semantic

similarity and find that our semantic similarity score dramatically outperforms other direct sequence comparison methods for predicting protein similarity.

(legend continued on next page)
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family level, based on their SCOP classification. We find that our

learned semantic embeddings dramatically outperform the

sequence comparison methods and even outperform structure

comparison with TMalign when predicting structural similarity.

Interestingly, we observe that the structural supervision compo-

nent is critical for learning well organized embeddings at a fine-

grained level, because the DLM-LSTM representations alone do

not perform well at this task (Table S1). Furthermore, the multi-

task learning approach outperforms a two-step learning

approach presented previously (SSA-LSTM) (Bepler and Berger,

2019).

With the success of our self-supervised and supervised lan-

guage models, we sought to investigate whether protein lan-

guage models could improve function prediction through trans-

fer learning.

Transfer learning improves downstream applications
A key challenge in biology is that many problems are small data

problems. Quantitative protein characterization assays are rarely

high throughput and methods are needed that can generalize

given only 10 s to 100 s of experimental measurements. Further-

more, we are often interested in extrapolating from data

collected over a small region of protein sequence space to other

sequences, often with little to no homology. Learned protein rep-

resentations improve predictive ability for downstream predic-

tion problems through transfer learning (Figure 5A). Transfer

learning is the problem of applying knowledge learned from solv-

ing some prior tasks to a different task of interest. In other words,

learning to solve task A can help learn to solve task B; analo-

gously, learning how to wax cars helps to learn karate moves

(Karate Kid, 1984). This is especially useful for tasks with little

available training data, such as protein function prediction,

because models can be pre-trained on other tasks with plentiful

training data to improve performance through transfer learning.

Application of protein language models to downstream tasks

through transfer learning was first demonstrated by Bepler and

Berger (2019). They showed that transfer learning was useful

for structural similarity prediction, secondary structure predic-

tion, residue-residue contact prediction, and transmembrane

region prediction, by fitting task specific models on top of a

pre-trained bidirectional language model. The key insight was

that the sequence representations (vector embeddings) learned

by the language model were powerful features for solving other

prediction problems. Since then, various language model-based

protein embedding methods have been applied to these and

other protein prediction problems through transfer learning,

including protein phenotype prediction (Alley et al., 2019; Rao

et al., 2019; Rives et al., 2019; Luo et al., 2020), residue-residue

contact prediction (Rives et al., 2019; Rao et al., 2020), fold

recognition (Rao et al., 2019), protein-protein (Zhou et al.,

2020; Sledzieski et al., 2021) and protein-drug interaction predic-

tion (Hie et al., 2020b; Truong and Truong, 2020). Recent works

have shown that increasing language model scale leads to

continued improvements in downstream applications, such as

residue-residue contact prediction (Rao et al., 2020). We also
Furthermore, our entirely sequence-based method even outperforms structura

database. Furthermore, we contrast our end-to-end MT-LSTMmodel with an earl

unified multi-task framework improves structural similarity classification.
find that increasing model size improves transfer learning

performance.

Here, we demonstrate two use cases where transfer learning

from our MT-LSTM improves performance on downstream

tasks. First, we consider the problem of transmembrane predic-

tion. This is a sequence labeling task in which we are provided

with the amino acid sequence of a protein and wish to decode,

for each position of the protein, whether that position is in a

transmembrane (i.e., membrane spanning) region of the protein

or not. This problem is complicated by the presence of signal

peptides, which are often confused as transmembrane regions.

In order to compare different sequence representations for

this problem, we train a small one layer bidirectional LSTM

with a conditional random field (BiLSTM+CRF) decoder on a

well-defined transmembrane protein benchmark dataset (Tsiri-

gos et al., 2015a). Methods are compared by 10-fold cross

validation. We find that the BiLSTM+CRFs with our new embed-

dings (DLM-LSTM and MT-LSTM) outperform existing trans-

membrane predictors and a BiLSTM+CRF using our previous

smaller embedding model (SSA-LSTM). Furthermore, represen-

tations learned by our MT-LSTM model significantly outperform

(paired t test, p = 0.044) the embeddings learned by our DLM-

LSTM model on this application (Figure 5B).

Second, we demonstrate that we are able to accurately pre-

dict functional implications of small changes in protein sequence

through transfer learning. An ideal model would be sensitive

down to the single amino acid level and would group mutations

with similar functional outcomes closely in semantic space.

Recently, Luo et al. presented a method for combining language

model-based representations with local evolutionary context-

based representations (ECNet) and demonstrated that these

representations were powerful for sequence-to-phenotype

mapping on a panel of deep mutational scanning datasets (Luo

et al., 2020). In this problem, we observe a relatively small set

(100 s-1000s) of sequence-phenotype measurement pairs and

our goal is to predict phenotypes for unmeasured variants.

Observing that these are small data problems, we reasoned

that this is an ideal setting for Bayesian methods and that trans-

fer learning will be important for achieving good performance. To

this end, we propose a framework in which sequence variants

are first embedded using ourMT-LSTMand then phenotype pre-

dictions are made using Gaussian process (GP) regression using

our embeddings as features. We find that we can predict the

phenotypes of unobserved sequence variants across datasets

better than existing methods (Figure 5C). Our MT-LSTM embed-

ding powered GP achieves an average Spearman correlation of

0.65 with the measured phenotypes significantly outperforming

(paired t test, p = 0.006) the next best method, ECNet, which rea-

ches 0.60 average Spearman correlation.

Semi-supervised learning (van Engelen and Hoos, 2020), few-

shot learning (Wang et al., 2020a), meta-learning (Vanschoren,

2018; Hospedales et al., 2020), and other methods for rapid

adaptation to new problems and domains will be key future de-

velopments for pushing the limit of data efficient learning.

Methods that capture uncertainty (e.g., Gaussian processes
l comparison with TMalign when predicting structural similarity in the SCOP

ier two-step language model (SSA-LSTM) and find that training end-to-end in a
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Figure 5. Protein language models with transfer learning improve function prediction

(A) Transfer learning is the problem of applying knowledge gained from learning to solve some task, A, to another related task, B. For example, applying

knowledge from recognizing dogs to recognizing cats. Usually, transfer learning is used to improve performance on tasks with little available data by transferring

knowledge from other tasks with large amounts of available data. In the case of proteins, we are interested in applying knowledge from evolutionary sequence

modeling and structure modeling to protein function prediction tasks.

(B) Transfer learning improves transmembrane prediction. Our transmembrane prediction model consists of two components. First, the protein sequence is

embedded using our pre-trained languagemodel (MT-LSTM) by taking the hidden layers of the languagemodel at each position. Then, these representations are

fed into a small single layer bidirectional LSTM (BiLSTM) and the output of this is fed into a conditional random field (CRF) to predict the transmembrane label at

each position. We evaluate the model by 10-fold cross validation on proteins split into four categories: transmembrane only (TM), signal peptide and trans-

membrane (TM+SP), globular only (Globular), and globular with signal peptide (Globular+SP). A protein is considered correctly predicted if 1) the presence or

absence of signal peptide is correctly predicted and 2) the number of locations of transmembrane regions is correctly predicted. The table reports the fraction of

correctly predicted proteins in each category for our model (BiLSTM+CRF) and widely used transmembrane prediction methods. A BiLSTM+CRF model trained

(legend continued on next page)
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and other Bayesian methods) will continue to be important,

particularly for guiding experimental design. Some recent works

have explored Gaussian process-based methods for guiding

protein design with simple protein sequence representations

(Romero, Krause and Arnold, 2013; Bedbrook et al., 2017;

Yang et al., 2018). Hie et al., presented a GP-based method for

guiding experimental drug design informed by deep protein em-

beddings (Hie et al., 2020b). Other works have explored

combining neural network and GP models (Ding et al., 2019; Pa-

tacchiola et al., 2019); while still others considered non-GP-

based uncertainty aware predictionmethods for antibody design

and major histocompatibility complex (MHC) peptide display

prediction (Zeng and Gifford, 2019; Liu et al., 2020). Methods

for combining multiple predictors and for incorporating strong

priors into protein design can also help to alleviate problems

that arise in the low data regime (Brookes, Park and Listgarten,

2019). Transfer learning and massive protein language models

will play a key role in future protein property prediction and ma-

chine learning driven protein and drug design efforts.

Conclusions and perspectives: Strong biological priors
are key to improving protein language models
Future developments in protein language modeling and repre-

sentation learning will need to model properties that are unique

to proteins. Biological sequences are not natural language, and

we should develop new languagemodels that capture the funda-

mental nature of biological sequences. While demonstrably use-

ful, existing methods based on recurrent neural networks and

Transformers still do not fundamentally encode key protein prop-

erties in the model architecture and the inductive biases of these

models are only roughly understood (Box 1).

Proteins are objects that exist in physical space. Similarly, we

understand many of the fundamental evolutionary processes

that give rise to the diversity of protein sequences observed

today. These two elements, physics and evolution, are the

key properties of proteins and our models might benefit from

being structured explicitly to incorporate evolutionary and

physics-based inductive biases. Early attempts at capturing

physical properties of proteins as part of machine learning

models have already demonstrated that conditioning on struc-

ture improves generative models of sequence (Ingraham et al.,

2019b) and significant work has been done in the opposite direc-

tion of machine learning-based structure prediction methods

that explicitly incorporate constraints on protein geometries

(Liu et al., 2018; AlQuraishi, 2019; Ingraham et al., 2019b; Xu,

2019; Jumper et al., 2020; Yang et al., 2020). However, new

methods are needed to fuse these directions with physics-based

approaches and to start to fully merge sequence- and structure-

based models.
using 1-hot embeddings of the protein sequence instead of our language model re

for this task (Table S2).

(C) Transfer learning improves sequence-to-phenotype prediction. Deep mutation

consider 19 mutational scanning datasets spanning a variety of proteins and phe

fitting a Gaussian process regressionmodel on top of representations given by ou

prior works in supervised learning (o), and our Gaussian process regression appr

fold cross validation. Spearman rank correlation coefficients between predicted

learning outperforms all other methods, having an average correlation of 0.6

improvement over the 1-hot representations which only reach 0.57 average corre

datasets.
At the same time, current protein language models make

heavily simplified phylogenetic assumptions. By treating each

sequence as an independent draw from some prior distribution

over sequences, current methods assume that all protein se-

quences arise independently in a star phylogeny. Convention-

ally, this problem is crudely addressed by filtering sequences

based on percent identity. However, significant effort has been

dedicated to understanding protein sequences as emerging

from tree-structured evolutionary processes over time or coales-

cent processes in reverse time (Rosenberg and Nordborg, 2002;

Nascimento, Reis and Yang, 2017). Methods for inferring these

latent phylogenetic trees continue to be of substantial interest

(Huelsenbeck and Ronquist, 2001; Lartillot, Lepage and Blan-

quart, 2009; Bouckaert et al., 2019), but are frustrated by long

run times and poor scalability to large datasets. In the future,

deep generative models of proteins might seek to merge these

disciplines to model proteins as being generated from evolu-

tionary processes other than star phylogenies.

Other practical considerations continue to frustrate our ability

to develop newprotein languagemodels and rapidly iterate on ex-

periments. High compute costs and murky design guidelines

mean that developing new models is often an expensive, time

consuming, and ad hoc process. It is not clear at what dataset

sizes and levels of sequence diversity one model will outperform

another or how many parameters a model should include. At the

upper limit of large natural protein databases, larger models

continue to yield improved performance. However, for individual

protein families or other application specific protein datasets,

the gold standard is to select model architectures and number

of parameters via brute force hyperparameter search methods.

Fine-tuning pre-trained models can help with this problem but

does not fully resolve it. Sequence length also remains a chal-

lenge for these models. Transformers scale quadratically with

sequence length, which means that in practical implementations

long sequences need to either be excluded or truncated. New

linear complexity attention mechanisms may help to alleviate

this limitation (Choromanski et al., 2020; Wang et al., 2020b).

This problem is less extreme for recurrent neural networks, which

scale linearly with sequence length, but very long sequences are

still impractical for RNNs to handle and long-range sequence de-

pendencies are unlikely to be learned well by these models.

Language models capture complex relationships between

residues in protein sequences by condensing information from

enormous protein sequence databases. They are a powerful

new development for understanding and making predictions

about biological sequences. Increasingmodel size, compute po-

wer, and dataset size will only continue to improve performance

of protein language models. Already, these methods are trans-

forming computational protein biology today due to their ease
presentations performs poorly, highlighting the importance of transfer learning

al scanning measures function for thousands of protein sequence variants. We

notypes. For each dataset, we learn the sequence-to-phenotype mapping by

r pre-trained languagemodel. We compare three unsupervised approaches (+),

oaches with (ÿ, GP (MT-LSTM)) and without (GP (1-hot)) transfer learning by 5-

and ground truth functional measurements are plotted. Our GP with transfer

5 across datasets. The benefits of transfer learning are highlighted by the

lation across datasets. Transfer learning improves performance on 18 out of 19
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of use and widespread applicability. Furthermore, augmenting

language models with protein specific properties such as struc-

ture and function offers one already successful route toward

even richer representations and novel biology. However, it re-

mains unclear how best to encode prior biological knowledge

into the inductive bias of these models. We hope this Synthesis

propels the community to work toward developing purpose-built

protein language models with natural inductive biases suited for

the physical nature of proteins and how they evolve.
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Göbel, U., Sander, C., Schneider, R., and Valencia, A. (1994). Correlated mu-

tations and residue contacts in proteins. Proteins 18, 309–317.

Godzik, A., Kolinski, A., and Skolnick, J. (1993). De novo and inverse folding

predictions of protein structure and dynamics. J. Comput. Aided Mol. Des.

7, 397–438.

Graves, A., Fernández, S., and Schmidhuber, J. (2005). Bidirectional LSTM

Networks for Improved Phoneme Classification and Recognition. In Artificial

Neural Networks: Formal Models and Their Applications – ICANN 2005

(Springer Berlin Heidelberg), pp. 799–804.

Harris, Z.S. (1954). Distributional Structure. Word World 10, 146–162.

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). GROMACS

4:cAlgorithms for Highly Efficient, Load-Balanced, and Scalable Molecular

Simulation. J. Chem. Theory Comput. 4, 435–447.

Hie, B., Zhong, E., Bryson, B., and Berger, B. (2020a). Learning mutational se-

mantics. Advances in Neural Information Processing Systems 33. https://

proceedings.neurips.cc/paper/2020/hash/6754e06e46dfa419d5afe3c9781c

ecad-Abstract.html.

Hie, B., Bryson, B.D., and Berger, B. (2020b). Leveraging Uncertainty in

Machine Learning Accelerates Biological Discovery and Design. Cell Syst.

11, 461–477.e9.

Hie, B., Zhong, E.D., Berger, B., and Bryson, B. (2021). Learning the language

of viral evolution and escape. Science 371, 284–288.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780.
Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C.

(2006). Comparison of multiple Amber force fields and development of

improved protein backbone parameters. Proteins 65, 712–725.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2020). Meta-

Learning in Neural Networks: A Survey. arXiv, 2004.05439 http://arxiv.org/

abs/2004.05439.

Hubbard, T.J., Murzin, A.G., Brenner, S.E., and Chothia, C. (1997). SCOP: a

structural classification of proteins database. Nucleic Acids Res. 25, 236–239.

Huelsenbeck, J.P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of

phylogenetic trees. Bioinformatics 17, 754–755.

Ingraham, J., Garg, V.K., Barzilay, R., and Jaakkola, T. (2019a). Generative

Models for Graph-Based Protein Design. In Advances in Neural Information

Processing Systems, H. Wallach, et al., eds. (Curran Associates, Inc.),

pp. 15820–15831.

Ingraham, J., Riesselman, A., Sander, C., andMarks, D. (2019b). Learning pro-

tein structure with a differentiable simulator. In International Conference on

Learning Representations https://openreview.net/forum?id=Byg3y3C9Km.

Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J.,

Bercot, B., Petit, E., Poulain, J., Barnaud, G., et al. (2013). Capturing the muta-

tional landscape of the beta-lactamase TEM-1. Proc. Natl. Acad. Sci. USA 110,

13067–13072.

James, L.C., and Tawfik, D.S. (2003). Conformational diversity and protein

evolution–a 60-year-old hypothesis revisited. Trends Biochem. Sci. 28,

361–368.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool,

K., Ronneberger, O., Bates, R., Zidek, A., Brigland, A., et al.. https://

predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R.,

Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling Laws for

Neural Language Models. arXiv, 2001.08361 http://arxiv.org/abs/2001.08361.

Kingma, D.P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization.

In International Conference on Learning Representations. 1412.6980, http://

arxiv.org/abs/1412.6980.

Kitzman, J.O., Starita, L.M., Lo, R.S., Fields, S., and Shendure, J. (2015).

Massively parallel single-amino-acid mutagenesis. Nat. Methods 12,

203–206, 4 p following 206.

Klesmith, J.R., Bacik, J.-P., Wrenbeck, E.E., Michalczyk, R., and Whitehead,

T.A. (2017). Trade-offs between enzyme fitness and solubility illuminated by

deep mutational scanning. PNAS 114, 2265–2270.

Kosloff, M., and Kolodny, R. (2008). Sequence-similar, structure-dissimilar

protein pairs in the PDB. Proteins 71, 891–902.

Lartillot, N., Lepage, T., and Blanquart, S. (2009). PhyloBayes 3: a Bayesian

software package for phylogenetic reconstruction and molecular dating.

Bioinformatics 25, 2286–2288.

Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R.,

Kaufman, K., Renfrew, P.D., Smith, C.A., et al. (2011). Chapter nineteen -

Rosetta3: An Object-Oriented Software Suite for the Simulation and Design

of Macromolecules. In Methods in Enzymology, M.L. Johnson and L. Brand,

eds. (Academic Press), pp. 545–574.

Liu,Y.,Palmedo,P.,Ye,Q.,Berger,B.,andPeng,J. (2018).EnhancingEvolutionary

Couplings with Deep Convolutional Neural Networks. Cell Syst. 6, 65–74.e3.

Liu, G., Zeng, H., Mueller, J., Carter, B., Wang, Z., Schilz, J., Horny, G.,

Birnbaum,M.E., Ewert, S., and Gifford, D.K. (2020). Antibody complementarity

determining region design using high-capacity machine learning.

Bioinformatics 36, 2126–2133.

Luo, Y., Vo, L., Ding, H., Su, Y., Liu, Y., Qian, W.W., Zhao, H., and Peng, J.

(2020). Evolutionary Context-Integrated Deep Sequence Modeling for

Protein Engineering. In Research in Computational Molecular Biology

(Springer International Publishing), pp. 261–263.

Madani, A., McCann, B., Naik, N., Keskar, N.S., Anand, N., Eguchi, R.R.,

Huang, P.-S., and Sochler, R. (2020). ProGen: Language Modeling for

Protein Generation. arXiv, 2004.03497 http://arxiv.org/abs/2004.03497.

Marks, D.S., Hopf, T.A., and Sander, C. (2012). Protein structure prediction

from sequence variation. Nat. Biotechnol. 30, 1072–1080.
Cell Systems 12, 654–669, June 16, 2021 667

http://refhub.elsevier.com/S2405-4712(21)00203-9/sref22
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref22
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref22
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref22
https://openreview.net/pdf?id=Ua6zuk0WRH
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref24
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref24
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref26
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref26
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref27
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref27
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref28
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref28
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref28
http://arxiv.org/abs/2007.06225
http://arxiv.org/abs/2007.06225
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref30
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref30
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref30
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref30
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref31
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref31
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref32
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref32
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref32
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref33
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref33
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref33
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref33
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref34
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref34
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref35
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref35
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref35
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref36
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref36
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref36
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref36
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref37
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref38
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref38
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref38
https://proceedings.neurips.cc/paper/2020/hash/6754e06e46dfa419d5afe3c9781cecad-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6754e06e46dfa419d5afe3c9781cecad-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6754e06e46dfa419d5afe3c9781cecad-Abstract.html
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref40
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref40
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref40
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref41
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref41
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref42
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref42
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref43
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref43
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref43
http://arxiv.org/abs/2004.05439
http://arxiv.org/abs/2004.05439
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref45
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref45
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref46
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref46
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref47
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref47
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref47
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref47
https://openreview.net/forum?id=Byg3y3C9Km
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref49
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref49
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref49
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref49
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref50
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref50
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref50
https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf
https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref54
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref54
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref54
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref55
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref55
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref55
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref56
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref56
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref57
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref57
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref57
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref58
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref58
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref58
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref58
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref58
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref59
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref59
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref60
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref60
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref60
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref60
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref61
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref61
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref61
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref61
http://arxiv.org/abs/2004.03497
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref63
http://refhub.elsevier.com/S2405-4712(21)00203-9/sref63


ll
OPEN ACCESS Synthesis
Matreyek, K.A., Starita, L.M., Stephany, J.J., Martin, B., Chiasson, M.A., Gray,

V.E., Kircher, M., Khechaduri, A., Dines, J.N., Hause, R.J., et al. (2018).

Multiplex assessment of protein variant abundance by massively parallel

sequencing. Nat. Genet. 50, 874–882.

McDonnell, A.V., Jiang, T., Keating, A.E., and Berger, B. (2006). Paircoil2:

improved prediction of coiled coils from sequence. Bioinformatics 22, 356–358.

McLaughlin, R.N., Jr., Poelwijk, F.J., Raman, A., Gosal, W.S., and

Ranganathan, R. (2012). The spatial architecture of protein function and adap-

tation. Nature 491, 138–142.

Melamed, D., Young, D.L., Gamble, C.E., Miller, C.R., and Fields, S. (2013).

Deep mutational scanning of an RRM domain of the Saccharomyces cerevi-

siae poly(A)-binding protein. RNA 19, 1537–1551.

Mitchell, T. M. 1980. The need for biases in learning generalizations. New

Jersey: Department of Computer Science, Laboratory for Computer Science

Research, Rutgers Univ.; 1980 May.

Nascimento, F.F., Reis, M.D., and Yang, Z. (2017). A biologist’s guide to

Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454.

Needleman, S.B., and Wunsch, C.D. (1970). A general method applicable to

the search for similarities in the amino acid sequence of two proteins.

J. Mol. Biol. 48, 443–453.

Patacchiola, M., Turner, J., Crowley, E.J., O’Boyle, M., and Storkey, A. (2019).

Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels. arXiv,

1910.05199 https://arxiv.org/abs/1910.05199.

Peters, M.E., Neumann M, and Iyyer M. (2018). Deep contextualized word rep-

resentations. arXiv, 1802.05365 http://arxiv.org/abs/1802.05365.

Pruitt, K.D., Tatusova, T., andMaglott, D.R. (2007). NCBI reference sequences

(RefSeq): a curated non-redundant sequence database of genomes, tran-

scripts and proteins. Nucleic Acids Res. 35, D61–D65.

Paszke, A., Gross, S., Chintala, S., et al.. https://proceedings.neurips.cc/

paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018) Improving

language understanding by generative pre-training. cs.ubc.ca. https://www.

cs.ubc.ca/�amuham01/LING530/papers/radford2018improving.pdf

(Accessed: 14 January 2021).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI blog 1.

https://d4mucfpksywv.cloudfront.net/better-language-models/language_

models_are_unsupervised_multitask_learners.pdf.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., Abbeel,

P., and Song, Y.S. (2019). Evaluating Protein Transfer Learning with TAPE.

Adv. Neural Inf. Process. Syst. 32, 9689–9701.

Rao, R., Meier, J., Sercu, T., Ovchinnikov, S., and Rives, A. (2020). Transformer

protein language models are unsupervised structure learners. bioRxiv. https://

doi.org/10.1101/2020.12.15.422761.

Rasmussen, C.E., and Williams, C.K.I. (2005). Gaussian Processes for

Machine Learning. (MIT Press).

Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2011a). HHblits: light-
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bonnie

Berger (bab@mit.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d This paper did not generate new data.

d Source code and model parameters are available at https://github.com/tbepler/prose.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Bidirectional LSTM encoder with skip connections
We structure the sequence encoder of our DLM- and MT-LSTMmodels as a three-layered bidirectional LSTMwith skip connections

from each layer to the final output. Our LSTMs have 1024 hidden units in each direction of each layer. We feed a 1-hot encoding of the

amino acid sequence as the input to the first layer. Given a sequence input, x, of length L, this sequence is 1-hot encoded into a ma-

trix, O, of size Lx21 where entry oi,j = 1 if xi = j (that is, amino acid xi has index j) and oi,j = 0 otherwise. We then calculate H(1) = f(1)(O),

H(2) = f(2)(H(1)), H(3) = f(3)(H(2)), and Z = [H(1) H(2) H(3)] where H(a) is the hidden units of the ath layer and f(a) is the ath BiLSTM layer. The final

output of the encoder, Z, is the concatenation of the hidden units of each layer along the embedding dimension.

Masked language modeling module
We use a masked language modeling objective for training on sequences only. During training, we randomly replace 10% of the

amino acids in a sequence with either an auxiliary mask token or a uniformly random draw from the amino acids and train our model

to predict the original amino acids at those positions. Given an input sequence, x, we randomly mask this sequence to create a new

sequence, x’. This sequence is fed into our encoder to give a sequence of vector representations, Z. We decode these vectors into a

distribution over amino acids at each position, p, using a linear layer. The parameters of this layer are learned jointly with the param-

eters of the encoder network.We calculate themasked languagemodeling loss as the negative log likelihood of the true amino acid at

each of the masked positions, Lmasked = � 1
n

P

i

log pi;xi where there are n masked positions indexed by i.

Residue-residue contact prediction module
Wepredict intra-residue contacts using a bilinear projection of the sequence embeddings. Given a sequence, x, with embeddings, Z,

calculated using our encoder network, the bilinear projection calculates ZWZT + b, whereWand b are learnable parameters of dimen-

sion DxD and 1 respectively where D is the dimension of an embedding vector. These parameters are fit together with the parameters

of the encoder network. This produces an LxL matrix, where L is the length of x. We interpret the i,jth entry in this matrix as the log-

likelihood ratio between the probability that the ith and jth residues are within 8 Å in the 3D protein structure and the probability that

they are not. We then calculate the contact loss, Lcontact, as the negative log-likelihood of the true contacts given the predicted con-

tact probabilities.

Structure similarity prediction module
Our structure similarity prediction module follows previously described methods (Bepler and Berger, 2019). Given two input se-

quences, X and X’ with lengths N andM, that have been encoded into vector representations, Z and Z’, we calculate reduced dimen-

sion projections, A = ZB and A’ = Z’B, where B is a DxK matrix that is trained together with the encoder network parameters. K is a

hyperparameter and is set to 100. Given A and A’, we calculate the inter-residue semantic distances between the two sequences as

the Manhattan distance between the embedding at position i in the first sequence and embedding at position j in the second

sequence, di,j = ||Ai - A’j||1. Given these distances, we calculate a soft alignment between the positions of sequences X and X’.

The alignment weight between two positions, i and j, is defined as ci;j = ai;j + bi;j � ai;jbi;jwhere ai;j =
ki;jPN

l =1
ki;l
and bi;j =

ki;jPM

l =1
kl;j
and

ki;j = e�di;j . With the inter-residue semantic distances and the alignment weights, we then define a global similarity between the

two sequences as the negative semantic distance between the positions averaged over the alignment, s = � 1
C

P

i;j

ci;jdi;j where

c =
P

i;j

ci;j.
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With this global similarity based on the sequence embeddings in hand, we need to compare it against a ground truth similarity to

calculate the gradient of our loss signal and update the parameters. Because we want our semantic similarity to reflect structural

similarity, we retrieve ground truth labels, t, from the SCOP database by assigning increasing levels of similarity to proteins based

on the number of levels in the SCOP hierarchy that they share. In other words, we assign a ground truth label of 0 to proteins not

in the same class, 1 to proteins in the same class but not the same fold, 2 to proteins in the same fold but not the same superfamily,

3 to proteins in the same superfamily but not in the same family, and finally 4 to proteins in the same family. We relate our semantic

similarity to these levels of structural similarity through ordinal regression. We calculate the probability that two sequences are similar

at a level t or higher as pðyRtÞ = qts + bt where qt and bt are additional learnable parameters for tR1.We impose the constraint that

qtR0 in order to ensure that increasing similarity between the embeddings corresponds to increasing numbers of shared levels in the

SCOP hierarchy. Given these distributions, we calculate the probability that two proteins are similar at exactly level t as pðy = tÞ =

pðyRtÞð1 � pðyRt + 1ÞÞ. That is, the probability that two sequences are similar at exactly level t is equal to the probability they are

similar at at least level t times the probability they are not similar at a level above t.

We then define the structural similarity prediction loss to be the negative log-likelihood of the observed similarity labels under this

model, Lsimilarity = � log pðy = tÞ.

Multi-task loss
We define the combined multi-task loss as a weighted sum of the language modeling, contact prediction, and similarity prediction

losses, LMT = lmaskedLmasked + lcontactLcontact + lsimilarityLsimilarity :

Training datasets
We train our masked language models on a large corpus of protein sequences, UniRef90 (Suzek et al., 2007), retrieved in July 2018.

This dataset contains 76,215,872 protein sequences filtered to 90% sequence identity. For structural supervision, we use the SCOPe

ASTRAL protein dataset previously presented by Bepler & Berger (Fox, Brenner and Chandonia, 2014; Chandonia, Fox and Brenner,

2017; Bepler and Berger, 2019). This dataset contains 28,010 protein sequences with known structures and SCOP classifications

from the SCOPe ASTRAL 2.06 release. These sequences are split into 22,408 training sequences and 5,602 testing sequences.

Hyperparameters and training details
We train two language models with different settings of the weights in the loss term. The first model, DLM-LSTM, uses only the

masked language modeling objective so is trained with lmasked = 1; lcontact = 0; and lsimilarity = 0:The second model, MT-LSTM,

uses the full multi-task objective with weights lmasked = 0:5; lcontact = 0:9; and lsimilarity = 0:1:The DLM-LSTM model was trained for

1,000,000 parameter updates using a minibatch size of 100 using the Adam optimizer (Kingma and Ba, 2015) with a learning rate

of 0.0001. The MT-LSTM model was also trained for 1,000,000 parameter updates using Adam with a learning rate of 0.0001,

but, due to GPU RAM restrictions, we had to train the MT-LSTM model with smaller minibatch sizes of 64 for the masked language

model objective and 16 for the structure-based objectives. Following Bepler & Berger (Bepler and Berger, 2019), we sampled pairs of

proteins for the structural similarity prediction task with an exponential smoothing parameter, t = 0:5; in order to oversample the rela-

tively rare highly similar protein pairs in the dataset. During training, we applied a mild regularization on the structure tasks by

randomly resampling positions from a uniform distribution over amino acids with probability 0.05.

Models were implemented using PyTorch (Paszke et al., 2017) and trained on a single NVIDIA V100 GPU with 32GB of RAM.

Training time was roughly 13 days for the DLM-LSTM model and 51 days for the MT-LSTM model.

Protein structural similarity prediction evaluation
We evaluate protein structural similarity methods on the SCOPe ASTRAL test set described above (Training datasets). All methods

are evaluated on 100,000 randomly sampled protein pairs in this dataset. For each prediction method, we calculate the predicted

similarity between each pair using only the sequence of each protein with the exception of TMalign which operates on the protein

structures. Because TMscore is not symmetric, we calculate TMscore for both comparison directions and average them together

for each protein pair. We found this outperformed other methods of combining the two scores. For HHalign, we first constructed pro-

file HMMs for each protein by iteratively searching for homologs in the uniprot30 database provided by the authors using HHblits

(Remmert et al., 2011c). We then calculate the similarities between each pair of proteins by aligning their HMMs with HHalign. For

protein language model embedding methods, we calculate the predicted similarity as described above (Structural similarity predic-

tion module).

We compare the predicted structural similarity scores against the ground truth scores defined by SCOP across a variety of metrics.

Accuracy is the fraction of protein pairs for which the similarity level is predicted exactly correctly. We also calculate the Pearson

correlation coefficient (r) and Spearman rank correlation coefficient ðrÞ between the predicted and ground truth similarities. Finally,

we calculate the average-precision score for retrieving pairs of proteins at or above each level of similarity. That is, we report the

average-precision score for each method where the positive set is proteins in the same class, in the same fold, in the same super-

family, or in the same family.
Cell Systems 12, 654–669.e1–e3, June 16, 2021 e2
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Transmembrane region prediction training and evaluation
We follow the procedure for transmembrane prediction and evaluation previously described by Tsirigos et al. and the model

described by Bepler & Berger (Tsirigos et al., 2015a; Bepler and Berger, 2019). The TOPCONS2 dataset contains protein sequences

and transmembrane annotations for four categories of proteins: 1) proteins with transmembrane regions (TM), 2) proteins with trans-

membrane regions and a signal peptide (TM+SP), 3) proteins without transmembrane regions or a signal peptide (globular), and 4)

proteins without transmembrane regions but with a signal peptide (globular+SP). Altogether, the dataset contains 5154 proteins

broken down into 286 TM, 627 TM+SP, 2927 globular, and 1314 globular+SP proteins.

In order to compare different protein representations for transmembrane prediction, we fit a single layer BiLSTM followed by a con-

ditional random field (CRF) decoder using either 1-hot encodings of the amino acid sequence or embeddings generated by the SSA-

LSTM, DLM-LSTM, orMT-LSTMmodels. The BiLSTM has 150 hidden units in each direction and the CRF decodes the outputs of the

BiLSTM to one of four states: signal peptide, cytosolic region, transmembrane region, or extracellular region. In the CRF, we use the

hidden state grammar and transitions defined by Tsirigos et al. (Tsirigos et al., 2015b) and only fit the input potentials. Themodels are

trained for 10 epochs over the data with a batch size of 1 using the Adam optimizer (Kingma and Ba, 2015) with a learning rate

of 0.0003.

We comparemethods by 10-fold cross validation. We calculate prediction performance over proteins in the held-out set by decod-

ing the most likely sequence of labels using the Viterbi algorithm and then scoring a protein as correctly predicted if 1) the protein is

globular and we predict no transmembrane or signal peptide regions, 2) the protein is globular+SP and we predict that the protein

starts with a signal peptide and has no transmembrane regions, 3) the protein is TM and we predict the correct number of transmem-

brane regionswith at least 50%overlap to the ground truth regions and no signal peptide, and 4) the protein is TM+SP and is the same

as TM except that we also predict that the protein starts with a signal peptide.

Sequence-to-phenotype prediction and evaluation
We retrieve the set of deep mutational scanning datasets aggregated by Riesselman et al. (Riesselman, Ingraham, and Marks, 2018)

and follow the supervised learning procedure used by Luo et al. (Luo et al., 2020). These datasets contain phenotypic measurements

of sequence variants across a variety of proteins and measured phenotypes. Phenotypes include enzyme function (Bandaru et al.,

2017;Wrenbeck, Azouz andWhitehead, 2017), growth (Melamed et al., 2013; Kitzman et al., 2015; Brenan et al., 2016; Klesmith et al.,

2017; Weile et al., 2017; Findlay et al., 2018), stability (Matreyek et al., 2018), peptide binding (Araya et al., 2012; McLaughlin et al.,

2012), ligase activity (Starita et al., 2013), and MIC (Jacquier et al., 2013).

For each dataset, we featurize the amino acid sequences of each variant as either a 1-hot encoding or by embedding the sequence

with our MT-LSTMmodel. We then apply dimensionality reduction to these vectors using PCA down to the minimum of 1000 PCs or

the number of data points in the dataset in order to improve the runtime of the learning algorithm.We then fit a Gaussian process (GP)

regression model using the RBF kernel and fit the kernel hyperparameters by maximum likelihood. We implement our GP models in

GPyTorch (Gardner et al., 2018). To compare methods, we follow Luo et al. and perform 5-fold cross validation on each deep muta-

tional scanning dataset (Luo et al., 2020) and calculate the Spearman rank correlation coefficient between our predicted phenotypes

and the ground truth phenotypes on the heldout data for each fold.
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